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Colocated schemes for the incompressible Navier–Stokes
equations on non-smooth grids for two-dimensional

problems
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Faculty of Information Technology and Systems, Delft Uni6ersity of Technology, Mekelweg 4,
2628 CD Delft, Netherlands

SUMMARY

The accuracy of colocated finite volume schemes for the incompressible Navier–Stokes equations on
non-smooth curvilinear grids is investigated. A frequently used scheme is found to be quite inaccurate on
non-smooth grids. In an attempt to improve the accuracy on such grids, three other schemes are
described and tested. Two of these are found to give satisfactory results. Copyright © 2000 John Wiley
& Sons, Ltd.

KEY WORDS: colocated schemes; incompressible Navier–Stokes; finite volume methods

1. INTRODUCTION

For the numerical solution of the incompressible Navier–Stokes equations on a structured
boundary-fitted grid, a colocated grid is more widely used than a staggered grid. The reason
is that accurate discretization on curvilinear grids is more straightforward. The accuracy
depends on the way in which derivatives are approximated at cell faces. In earlier publications,
e.g. [1–3], this has been accomplished by what is called the two-point method or the TP
method for short. It will be shown that this gives inaccurate results on non-smooth curvilinear
grids. Since, in practical engineering computations, the use of locally strongly distorted and
non-uniform grids is frequently unavoidable, discretizations that maintain accuracy under
these circumstances are useful. Three alternatives for improvement will be investigated. The
first method (called the BI method for short) used bilinear interpolation. The second (called
the PI method) uses the path–integral method described in [4–6]. The third (called the AUX
method) uses auxiliary points, and is a generalization of a method proposed in [7].
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2. DISCRETIZATION IN CURVILINEAR CO-ORDINATES

2.1. Transformation to cur6ilinear co-ordinates

It is sufficient to consider the two-dimensional case. A boundary-fitted co-ordinate transforma-
tion x=x(j) is assumed, mapping a rectangle G in the computational j plane onto the flow
domain in the physical x plane, which results in the following identity [8]:
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where 
g is the Jacobian of the mapping x=x(j) and a (a)=9ja. The summation convention
is used throughout. This allows the chain rule to be written as follows:
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The governing equations are transformed from x into j co-ordinates. The dependent variables
are not transformed. The momentum equations can be written as

(ru g

(t
+

1


g

(rVau g

(ja
+
(p
(x g

−
1


g

(
gab
(a)tg

b

(ja
=rf g,

tg
bm

�(ub

(x g
+
(u g

(xb

�
, (3)

Vaa (a) ·u,

where u g is the Cartesian x g component of u. Note that here the pressure gradient and the
shear stress are not transformed. Discretization with the PI and AUX methods starts from
Equation (3).

For the other two schemes, all terms are transformed to j co-ordinates, and (3) is rewritten
as follows:
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where gaba (a) ·a (b).

2.2. Finite 6olume discretization

A uniform grid is given in G. The mapping x=x(j) is assumed to be given in the nodes of G,
and extended to all of G by piecewise bilinear interpolation; for details see [6]. This makes the
mapping x=x(j) piecewise differentiable, so that strongly non-uniform grids are allowed. The
nodes are vertices of cells, which are unit squares in G, i.e. the mesh size satisfies Dja=1. The
cells in V are quadrilaterals with straight edges.
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The governing equations are integrated over a generic cell, Vh, in the physical domain. For
the time derivative and the source term, this gives
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d
dt

(ru g)(0,0),
&

Vh

rf g dV:
g(0,0)(rf g)(0,0). (5)

Positions in the grid in the vicinity of the generic cell Vh are denoted by subscripts (0, 0), etc.,
as indicated in Figures 1 and 2.

Derivatives with respect to ja in (3) and in (4) are handled as follows. The viscous term in
(3) and the inertia and pressure and terms in (4) can be subsumed under the following
expression:

Figure 1. Example of physical domain.

Figure 2. Computational domain.
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where d=b, f=tg
b for the stress term; d=b, f=rubu g for the inertia term; and d=g, f=p

for the pressure term. Integration over Vh gives
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Similarly, for the integral of the viscous term in (4) over Gh, an expression of the following
form results:
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where o=g, d=b or o=b, d=g. In order to eliminate spurious pressure modes, the
pressure-weighted interpolation method of Reference [9] is employed, but will not be discussed
here since this does not affect the discretization.

In order to complete the discretization, the cell face terms in (6) need to be expressed in
terms of cell centre values. This is not a trivial matter because, due to the piecewise bilinearity
of the co-ordinate mapping, geometric terms such as 
g and a (a) are discontinuous at the cell
faces. This is discussed in detail in Reference [6]. Three methods will be considered here.

3. THE TWO-POINT METHOD

The TP method has been employed in [1–3], and uses values from the two neighbouring cells.
At the cell face (1, 0) (cf. Figures 1 and 2), the covariant base vectors a(a)(x/(ja are
evaluated as follows:

a (1)=
1
4

(x(3,1)+x(3,−1)−x(−1,1)−x(−1,−1)),

a (2)=x(1,1)−x(1,−1).

(8)

From this the required quantities are evaluated by well-known identities
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The cell face quantity f(1,0) is approximated as follows:

f(1,0)= (d0f(2,0)+d2f(0,0))/(d0+d2), (10)

where dn is the distance between (n, 0) and (1, 0). For the case where (1, 0) lies on a straight
line between (0, 0) and (2, 0), Equation (10) represents linear interpolation, and the accuracy
is satisfactory. However, on strongly distorted grids, f(1,0) may be far from collinear with (0, 0)
and (2, 0), in which case Equation (10) is likely to be inaccurate.

The derivatives required in (7) are approximated as follows:
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Of course, inaccuracy in f(1,m) is inherited by this approximation of (f/(j2.
For the implementation of velocity boundary conditions, the domain is surrounded by ghost

cells in which virtual values are determined by means of the boundary conditions. For the
pressure gradient term, this is also done if a boundary condition is given for the pressure. If
this is not the case, ghost cells are not used for the pressure, but extrapolation is applied.
Assuming that (1, 0) is at the right-hand boundary, one writes

p(1,0)=p(0,0)+
d1

d−2

(p(0,0)−p(−2,0)). (12)

Furthermore, modification is required in the approximation of ((p/(j2)(1,0) when the (0, 1) cell
face is part of the upper boundary. Here one takes
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If the grid is smooth enough, the TP method gives good results, as shown in Reference [10].

4. THE BILINEAR INTERPOLATION METHOD

With the BI method, cell face values are determined by bilinear interpolation in the physical
plane. The point (1, 0) either lies in the quadrilateral spanned by the four cell centres (0, 0),
(2, 0), (2, 2) and (0, 2) or in the quadrilateral spanned by (0, 0), (2, 0), (2, −2) and (0, −2).
First, it is determined in which of these two quadrilaterals the point (1, 0) is located. Then,
f(1,0) is expressed in terms of the f values in the vertices of this quadrilateral by means of
bilinear interpolation. If it is assumed that (1, 0) is in the first quadrilateral specified above,
bilinear interpolation results in an approximation of the following type:

f(1,0):a0+a1j
1+a2j

2+a3j
1j2. (14)
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Figure 3. Choice of the quadrilateral close to a boundary.

The coefficients a0, . . . , a3 are efficiently computed by means of the Newton–Raphson
method. The cell face derivatives ((f/(ja)(1,0) are found by differentiation of (14).

When the cell face is part of a boundary, the point (1, 0) does not lie inside a quadrilateral
of the type specified above. Therefore, bilinear extrapolation is used to approximate f(1,0). For
this, the interior quadrilateral with vertices in cell centres that is nearest to (1, 0) is used, as
illustrated in Figure 3.

5. THE PATH–INTEGRAL METHOD

The PI method is described in References [5,6] for a staggered scheme. In Reference [4], one
finds the adaptations required for the colocated approach. The point of departure is Equation
(3).

The x g derivatives of u that appear in the expression for tg
b in (3) are approximated as

follows. For a differentiable function f, it is written

f �(0,0)
(2,0)=

& (2,0)

(0,0)

9f ·dx: (9f)(1,0) ·c(1), c(1)x �(0,0)
(2,0). (15)

Similarly, for the sum of the two integration paths (0, −2)–(0, 2) and (2, −2)–(2, 2), you get

f �(0,−2)
(0,2) +f �(2,−2)

(2,2) : (9f)(1,0) ·c(2), c(2)x �(0,−2)
(0,2) +x �(2,−2)

(2,2) . (16)

Solving Equations (15) and (16) for (9f)(1,0) gives

(9f)(1,0):c (1)f �(0,0)
(2,0)+c (2){f �(0,−2)

(0,2) +f �(2,−2)
(2,2) }, (17)
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where
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Note that this approximation of 9f does not require smoothness of the grid.
The PI method can also be applied to the pressure term, but was found to be not very

accurate for the colocated scheme. A more accurate approximation of the gradient is given by
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The pressure at the face centre is evaluated by the BI method. The remaining terms in (3) are
discretized with the BI method.

At the boundaries, the shear stress is approximated in the same way, using ghost cells for the
velocity and using the boundary conditions.

A possible source of inaccuracy of the PI method is that, on strongly distorted grids, the
evaluation point (1, 0) is far from centred with respect to the cell centres that are used in the
integration paths.

6. THE AUXILIARY POINT METHOD

The AUX method is a generalization of a method described in [7] (Section 8.6) to evaluate
gradients at cell faces. At both sides of the cell face centre (1, 0) points L and R are chosen at
an equal distance from (1, 0) and on the normal through (1, 0), cf. Figure 4. The distance
between L and R does not matter much, but should be such that L and R are in the polygon

Figure 4. Location of the auxiliary points.
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with vertices (0, 0), (0, 92), (2, 0), (2, 92). This can be simply realized in practice, for
example, by first choosing d [(1, 0), L ]=d [(1, 0), R ]=1

5min {d [(1, 0), (0, 0)], d [(2, 0), (1, 0)]},
and halving the distance successively until L and R are inside the aforementioned polygon.

By bilinear interpolation, fL and fR are expressed in terms of cell centre values. A cell face
value f(1,0) is obtained by

f(1,0)=
1
2

(fL+fR). (20)

The pressure term is approximated by (19) and the cell face pressure is given by (20).
In order to approximate derivatives at (1, 0), first f(1,91) is approximated by the BI method

between the surrounding cell centres. Normal and tangential derivatives at (1, 0) are easily
approximated by means of differences of f(1,91), fL and fR. These are easily transformed to
approximations of xa derivatives, or equivalently, the PI method can be used as a convenient
way to arrive at the following formulae (cf. Equations (17) and (18)):

(9f)(1,0):c (1)f �LR+c (2)f �(1,−1)
(1,1) ,

c (1)
1
C

(c (2)
2 , −c (2)

1 ), c (2)
1
C

(−c (1)
2 , c (1)

1 ), Cc (1)
1 c (2)

2 −c (2)
1 c (1)

2 , (21)

c(1)xR−xL, c(2)x(1,1)−x(1,−1).

The derivatives (ub/(x g and (u g/(xb, which occur in tg
b, are evaluated according to (21).

At the boundaries, the shear stress is approximated in the same way, using auxiliary points.
L and R are on both sides of the boundary (cf. Figure 5) and boundary conditions are
expressed in terms of function values in L and R. Thus, it is necessary to build the (2, 0) and

Figure 5. Velocity: L and R at a boundary.
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(2, −2) ghost centres to obtain the quadrilateral surrounding L and R. However, it turns out
that the (2, 0) and (2, −2) values are coupled and simultaneously unknown. Generalizing this
process to all the cells near the boundaries implies that a linear system has to be solved, which
is done easily.

If the cell face centre (1, 0) is at a boundary and no pressure boundary condition is given,
then p(1,0) is expressed in terms of interior cell centre values by extrapolation, again using
auxiliary points. Both auxiliary points are chosen on the interior normal (cf. Figure 6), with
the distances satisfying d [(1, 0), L ]=1

2d(L, R).

7. BILINEAR INTERPOLATION WITH THE NEWTON–RAPHSON METHOD

The methods described before require frequent use of bilinear interpolation. It pays to do this
efficiently. Various methods have been put forward, see e.g. [11,12]. The following method has
been found to be efficient. Consider a quadrilateral, the vertices of which are cell centres
labelled 1, 2, 3 and 4. Suppose a bilinear function f(x), with f(x(m)), m=1, . . . , 4 being given,
and suppose that the functional dependence of f(xP) on f(x(m)) is desired. The point P may be
inside or outside the quadrilateral. The quadrilateral is mapped onto the unit square by means
of a bilinear mapping x=x(s). Obviously, this mapping is given by

x=x(1)(1−s1)(1−s2)+x(2)s1(1−s2)+x(3)s1s2+x(4)(1−s1)s2. (22)

The function value f(xP) depends on f(x(m)) as follows:

f(x)= f(x(1))(1−s1)(1−s2)+ f(x(2))s1(1−s2)+ f(x(3))s1s2+ f(x(4))(1−s1)s2. (23)

Figure 6. Pressure: L and R at a boundary.
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It remains to determine sP. This is done by substituting x=xP into Equation (22) and by
solving the resulting 2×2 system numerically by the Newton–Raphson iteration.

8. NUMERICAL RESULTS

8.1. Preliminaries

The accuracy of the four schemes presented will be compared by application to a stationary
flow with known exact solution and to a flow in an L-shaped channel. The code uses time
stepping to steady state and the pressure-weighted interpolation method of Reference [9] to
banish spurious pressure modes.

A steady state is assumed to be reached at time t= (n+1)Dt if

fn+1−fn
fn+1 Bo

1−l

l
, (24)

for all unknowns f=u1, u2, p. Here   is the l2-norm and l is the rate of convergence to
steady state, approximated by

l=fn+1−fn/fn−fn−1. (25)

The tolerance is o=10−4; choosing o to be smaller was found to make no difference.
To visualize the results post-processing of the numerical solution is required. Most post-

processing codes, including the one used by us, require the numerical solution to be given at
the vertices of the cells. Hence, for cell centred colocated finite volume schemes, interpolation
is necessary. Bilinear interpolation is used for post-processing.

The first test case is a Poiseuille flow. The domain is the rectangle (0, L)× (0, 1). At x1=0,
the exact velocity vector is prescribed. At x2= (0, 1), the no-slip condition is enforced. At
x1=L, (u1/(x1=(u2/(x1=0 is imposed. The exact solution is given by

u1=4x2(1−x2), u2=0, p=8n(L−x1), n=m/r.

Of course, p is determined only up to a constant. L=4 and n=0.1 are chosen, corresponding
to Re=10, where Re is the Reynolds number based on the maximum velocity and the height
of the channel. The exact pressure drop Dpe=3.2; the exact volume flux Fe=2/3. The
numerical volume flux Fh is evaluated at the exit.

The second test case is the flow through an L-shaped channel. The same boundary
conditions as for Poiseuille flow are applied. The exact solution is not available.

8.2. Uniform Cartesian grid

To see what accuracy can be obtained on a smooth grid, two uniform Cartesian grids of 15×7
nodes and 27×17 nodes are chosen. On these grids, the four schemes under investigation are
identical. On the first grid, the computed pressure drop Dph=3.080, with a relative error of
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3.8% and the computed volume flux Fh=0.676, with a relative error of 1.5%. On the second
grid, the computed pressure drop Dph=3.182, which has a relative error of 0.6%, and the
computed volume flux Fh=0.660, with a relative error of 1%. The isobars (not shown) are
straight and uniformly spaced, as they should be.

8.3. Moderately distorted grid

Figure 7 shows a moderately distorted grid with 15×7 nodes. Figures 8 and 12 show results
obtained with the TP scheme. The isobar pattern is completely unrealistic. The streamlines are
quite straight except near the lower and upper walls of the channel. We find Fh=0.681 and
Dph=3.321, which are wrong.

The results obtained with the BI scheme, shown in Figures 9 and 13, are much better. But
the streamlines still look like the TP streamlines, and the isobars are not quite straight and
uniformly spaced. We find Fh=0.685 and Dph=2.910.

The results for the PI method are shown in Figures 10 and 14. The isobars are more evenly
spaced but no improvement is found for the streamlines. We find Fh=0.654 and Dph=3.098,
which is a significant improvement.

Figure 7. Moderately distorted grid.

Figure 8. Isobars with the TP method.

Figure 9. Isobars with the BI method.

Figure 10. Isobars with the PI method.
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Results for the AUX scheme are presented in Figures 11 and 15. The isobar pattern is of the
same quality as for PI, but the streamlines are less straight close to the walls. We find
Fh=0.633 and Dph=3.059, which is somewhat less accurate than for PI.

8.4. Highly distorted grid

To further discriminate between the four discretization methods, a more strongly distorted grid
is used for the Poiseuille problem. This grid has 27×17 nodes and is shown in Figure 16. For
the TP and BI schemes, the solver did not converge. But both the PI and the AUX schemes

Figure 11. Isobars with the AUX method.

Figure 12. Streamlines with the TP method.

Figure 13. Streamlines with the BI method.

Figure 14. Streamlines with the PI method.

Figure 15. Streamlines with the AUX method.
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Figure 16. Highly distorted grid.

Figure 17. Isobars with the PI method.

Figure 18. Isobars with the AUX method.

give an accurate solution, shown in Figures 17 and 18 for the pressure. In both cases, the
isobars are regularly distributed and straight, with results looking slightly better for the AUX
near the outlet. The streamlines are not shown because they are straight in both cases. We find
Fh=0.668 and Dph=3.210 for PI and Fh=0.660 and Dph=3.201 for AUX, which are both
close to the values obtained on the uniform 27×17 grid.

8.5. L-shaped channel

Finally, a flow in an L-shaped channel is considered to show the influence of a sharp corner
in the geometry. The mesh (cf. Figure 19) is generated by linear interpolation and contains
31×19 cells. The Reynolds number is one. The performance of the PI and the AUX schemes
on this mesh are compared. To have some basis of comparison, now that the exact solution in
not available, results obtained on the same grid with a finite element method (FEM) using the
Q1–P0 element are shown in Figures 20 and 21. The FEM gives Fh=0.664 and Dph=53.499.
The isobars by the AUX method (cf. Figure 23) look more realistic than the ones obtained by
the PI method close to the corner (cf. Figure 22), where wiggles appear. For both calculations,
the streamlines (not shown) look the same as the FEM ones, including the region near the
corner. The PI method gives Fh=0.670 and Dph=54.81, whereas the AUX method gives
Fh=0.664 and Dph=53.891, which is close to the values obtained by the FEM.
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The principles of the PI and the AUX methods carry over to the three-dimensional
case. For three-dimensional results with the PI method on staggered grids, see Reference
[13].

Figure 19. L-shaped grid.

Figure 20. Isobars with the FEM.

Figure 21. Streamlines with the FEM.
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Figure 22. Isobars with the PI method.

Figure 23. Isobars with the AUX method.

9. CONCLUSIONS

Four colocated schemes for the incompressible Navier–Stokes equations using the pressure-
weighted interpolation method of Rhie and Chow [9] have been compared on non-smooth
grids. The TP scheme (Section 3, frequently used in the past) is found to be inaccurate on
non-smooth grids. The BI scheme (Section 4) is found to be better, but still better are the PI
scheme (Section 5) and the AUX scheme (Section 6). The PI and the AUX schemes maintain
accuracy on very non-smooth grids.
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